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An analytic solution of the plane problem of a crack (finite or semi-infinite) along the interface between two elastic half-planes 
is given. Under tensile and shear forces, the crack opens over an interval (unknown in advance). In the vicinity of the crack tips 
the edges join smootl~ and Coulomb's law of &y friction applies. The materials are perfectly bonded everywhere except along 
the crack. A dosed exact solution is found in the case of a semi-infinite crack. The slip direction, the slip zone length, and formulae 
for the contact stress and displacement jumps are determined. The problem of a finite crack is reduced to the vector (third- 
order) Riemarm problem in the theory of analytic functions, for which an effective solution is constructed by the method proposed 
in [1]. An explicit relationship between the smaller and larger slip zone lengths is found by asymptotic analysis. A numerical 
analysis is carried out. Situations are determined in which the coefficient of friction has practically no effect on the length of the 
slip zone (to within 5%) and when the effect is substantial (20% or more). An effective analytic solution is found for Conminou's 
equation [2], which corresponds to the problem of an interface crack ignoring the friction between its edges. 

The introduction of contact slip zones without friction in order to prevent the crack edges from going 
too far in the direct passage from bonding to separation [3] was proposed in [2, 4], where the problem 
was reduced to a singular integral equation, which was solved numerically. The exact solution of this 
equation was constructed in [5, 6]. The explicit solution of the problem of a crack with one section along 
which the edges overlap (ignoring friction) in a uniform stress field was found in [7] (this solution was 
used there to find an asymptotic solution of the problem with two sections along which the edges overlap) 
and in [8]. The case of a non-uniform stress field was considered in [9]. In [10] it was proposed take 
dry friction into account in the contact slip zone. In [11] the problem of an interface crack with friction 
was reduced to a singular integral equation, for which a numerical method was used. The problem of 
a semi-infinite interface crack was considered in [12] using other models.$ 

1. A S E M I - I N F I N I T E  I N T E R F A C E  C R A C K  W H E N  T H E R E  IS 
C O N T A C T  F R I C T I O N  

C o n s i d e r  an e las t ic  p l ane  consis t ing o f  two ha l f -p lanes  rI  1 and  l-I 2 wi th  cons tan t s  o f  elast ic i ty  G1, vl  
( H I : y  > 0) a n d  G2, v2 (1-I2: y < O). A l o n g  the  in te r face  be tween  the  m e d i a  t he re  is a semi- inf ini te  c rack  
(0 < x < **,y = -+0) which is ac ted  on  by  c o n c e n t r a t e d  n o r m a l  and  t angen t i a l  loads  (Fig.  1) 

O y J y = i O = - P f i ( x - b ) ,  x&~. ly=_~=-T6(x -b) ,  a < x  < -  (1.1) 

a pp l i ed  to  the  c rack  edges  at  a given po in t  x = b. The  crack  is open  over  the  in terval  (a < x < ~) :  the  
t angen t i a l  a n d  n o r m a l  d i sp l acemen t s  u and  ~ u n d e r g o  a j u m p  with 

(X))(x) -= lO(x,-O)- ~(x,+O) ~< O, a < x < oo 

At an a priori unknown point a (0 < a < b) the crack edges join smoothly 

(1.2) 

(u)(x)=O,  O < x < a ;  ~-~(x,_+O)~O, X .-.~ d -F O (1.3) 

Since the normal displacements are continuous in the slip interval, the stresses o r (x, __O) must be 
compressive [2, 13]. 

ttgikl. Mat Mekit Vol. 59, No. 2, pp. 290-306, 1995. 
tSee also KIPNIS L. A., The slip line at the tip of an interface crack between different media. Uman, 1989. Deposited at 
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Fig. 1. 
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ay(X,i-O)~O, O<x<a 

In the interval 0 < x < a the tangential displacement is discontinuous and the tangential and normal 
stresses are related by the law of dry friction 

X~=l.t~y, y=i 'O,  O < x < a  (1.4) 

where [ ~t ] is the coefficient of  friction. The sign of  ~t is verified a posteriori from the condition ~t = 
sgn (u)(x) for 0 < x < a. For example, for the chosen parameters of the problem ~t < 0 will be considered 
correct if it turns out that u(x, +0) > u(x, -0) everywhere inside the slip zone (in this case %y(X, __.0) 
> 0 by (2.4)) for 0 < x < a. 

We introduce the jumps 

z,(x)=(~/~x), z2(x)=(~u/Ox), Ixl <oo (1.5) 

supp~l c[a,**),  supp~ 2 c[O,  oo) 

and use them to express the stresses ~r and x~y fo ry  = - 0  

o,,(x,~) = - ~+ ~ X~ (~) d~ + ~_X2(x) 
• ~ ~ - x  

T, xv(X,~O) ---- _ ~et+ 7 ~2(~) H I • ~ 0~T;-  -~_z~(x), Ixl<~ 

+ ~¢j +1 
2Gt ), /1+=±crr~+r~, rj = 

r = ( t r+  r I )(1 + tyl¢ 2 2 

~ j = 3 - 4 v j ,  j = l , 2 ;  ~=G1G2 ~ 

Substituting (1.6) into (1.1) taking (1.4) into account we obtain the system 

17~l(~)d~+ (x)- P 8(x-b), a<x<** 

~TZ~(~.)a~ + 1 7 ~ ( ~ ) , ~  +.,,,, (x)+,,'~. (X)---- 
~ a  q - x  ~ 0  q - x  

=Oq.t+)-t(T-l.tP)5(x-b), O<x<**; yflx_~t+ I 

(1.6) 

(1.7) 

of  two singular integral equations. Using Mellin's theorem on convolution, we can reduce this system 
to a system of functional equations, which is equivalent to the Riemann problem for a pair of functions 

O- ( s )  = - ctg2 ~ + y2 • + (s )+ Po Ctg~. ÷ TOY ~,+1, s E F 
Ix7 + ctg r~ ~ tT+c tg~  

(1.8) 
F :Re(s )=Y0 ¢ ( - ~ , 0 )  ( 0 < ~ < 1 ) ,  2~=ba -I >I  
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O - ( s ) =  
1 ! 

I ¢Yy(at, O)fdt, ##*(s) = 7X(at)t'dt 
r# ,  o I 
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Po = (bKtt+)-l p, To = (bKlt+)-m T 

We transform the boundary condition (1.8) into 

O-  (s___._)) _ ~(~) = L* (s)O + (s) + (J~ ctg m + T O T)M *l _ V -  (s) 
L- (s) (/zT + ctg ffs)L- (s) 

L+(s)= g o F ( - s ) F ( I - o t - s )  F( l+s)F(ot+s)  
r ( Y 2  - s - i S ) r O 6  - s + iS )  ' L -  ( s )  = r ( J 6  + s + i S ) r O 6  + s - iS )  

1 
ot =--arectg~tv ¢ (0,1), 8 = ~ 1  In 1+¥ 

n 2~  1 -  7 

sin 7tot 
 o=Tgz-   s, v-(,)= c. 

n=l S -- S n 

s 2 n _ l = ~ - i S - n ,  $2n=$2n_l, C 2 n = C 2 n _ l  (n = 1,2 .... ) 

C2 n-I = (Po - iTo¥ ctg~) sin lmF(n - a + )6 + iS)F(n + ib- ~ ) 
21tF(n)F(n + 2iS)Xn+iS-~ 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

The function W-(s) is analytic in the domain D-(Re (s) > To), and inD + it has poles at the same points 
as the second term on the right-hand side in (1.10). The choice of the coefficients C,, in (1.12) enables 
us to neutralize these poles (the points s,, become removable). Liouville's theorem applied to (1.10) 
yields the following formulae for the solution of (1.8) 

##-(s)=L-(s)V-(s), ##+(s)=L+Ts)[V-(s)-(P°ctgzts+T°y)Zs+'](ctgr, a +Wf)L-(s)  (1.13) 

Taking into account that L+-(s) = O(sr-~), s ~ o,, s e D-* and comparing (1.9) with (1.13), we find 
by Tanberian-type theorems that %(x, 0) and Zl(x) have integrable singularities as x ---> a - 0 and x --¢ 
a + 0, respectively. To make sure that the crack edges join smoothly at x = a, which is the second 
condition in (1.3), it is necessary and sufficient that 

(7. = 0 (1.14) 
n=l 

(in this case W-(s) = O(s-2), s --> 0% Is _ Sn] > e, e being a positive quantity as small as desired; 
n = 1, 2 . . . .  ). Substituting (1.12) into (1.14) we can write (1.14) in the form 

R e { r ( ~  + i 5 -  a)[r(1 + i8)]-I (4~,)-i5 ( p _  i7~, cth ~ )  x 

x F ( ~ + i S - a ,  J~+iS, 1+2i8; l / k ) } = 0  (1.15) 

This equality is a transcendental equation for determining X = b/a. When 2L ~ 1 + 0, Eq. (1.15) can 
be represented as follows [4]: 

R e { ( P - i ~ c t h ~ t S ) X - i s [ F ( ~ + i S - a ) F ( a - l ) { r ( _ J 6 + i S + a ) } - I  x 

x F ( ~ + i S - a ,  J~+iS, 2-0 t ;  1 - 1 / ~ , ) + ( 1 - 1 / X ) a - I F ( l _ a ) x  

x F ( - ~ + i S + a ,  J~+iS, a; l - l / k ) ] } = 0  

Note that when G1 --> oo, this equation is not the same as the corresponding equation [1] for a semi- 
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infinite punch. This is because in the punch problem the length of the slip zone is determined from the 
boundedness of the solution at the point of transition from slippage to bonding, while the length of 
the corresponding zone in the crack problem is found from the boundedness when passing from slippage 
to  separation. 

If Ix = 0 (~x = 1/2), Eq. (1.15) has an explicit solution, which is identical with that obtained before in [15] 

~., =ch2~-~8(k+2-O). o = l a r c t g ( ~ p  cthxS), k=O.1 .... 

(for P > 0 and T --> __** we have 0 ~ -+ th. and for T = 0 we have 0 = 0). 
When Ix # O. there is also a denumerable set of roots 

a~,,) ] - A ( a ) l  
= - a r c t g ~  +k ( re=l ,2  .... ), a(~ ° ) = k  = ]°=.l.-,, 

A(a) + in(o) = ( P -  i7~ cth ~ ) F ( ~  + iS - or)IF(1 + i~$)]-i x 

x F ( ~ + i f - o t ,  ~ + i 5 ;  1+2i5; 4e -=ts)  

Im {A (a ) ,B (a ) }  =0 ,  ~'k = ~4 exntts 

which is an effective iterative scheme for k ~> 1. 
Below we present a number of  init ial roots ~ for TIP = 10, a = 0.01, v l  = v2 = 0.3 

Ix = 0: 1.326 5.846 X 1014 4.604 X 1029  3.626 x 10 ~ 

Ix = -0.5: 1.283 5.424 × 1014 4.272 x 102 9 3.365 x 1044 

In order to determine the root 7~ and the sign of Ix corresponding to a physical solution, we obtain 
mpUtational formulae for the displacement jumps and contact stresses. We set ~°(x) = (~)(x) and 

) = (u)(x). Then, by (1.9) and (1.13), we find using the inverse Mellin transform that 

a ~P*(s)(x)  -'~ 

Z°(x )  = - 2 - ~ / [ ~ - ( s ) +  ctg rts~ + ( s ) -  PoZ"+' ] (x  '7~)-~ds 

where C O is a constant fixed by the condition x°(a) = 0. Using the Caueby theorem, we compute the 
last two integrals 

Z ° (x ,=  a. ,. Re/i  cos tc(lz + i~,[( x~)~-" A 0 / x ~ _  Ao(l,]} + 
Itltosn~ro [ L\ a ) \ a ) 

+b[no(Po.To: /b)-no(Po, To; l/X)], 

= 0 < x < a  
~IXO \ a )k a ) 

X0(x ) = a sin..._~oc Re[(IX ~-is 

+bHo(To,-Po; x lb ) ,  a < x < * *  

,=t F(n)F(n + 2i8)t" 

Ak(t)= ~ IF(n+ct-~+i8)12 W - ( 1 - n - c t ) t  "-t (k =0,1) 
,=1 F(n)F(n + ct - k) 
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Ho(P,T;t ) = ch 2 II 
® e(~-ili-n)llntl } 

Re ( P + iTy cth rvSsgn in t ) ~=i i/2 _ i$ _ n 

Now we shall find the contact stresses. To begin with, let 0<  x < a. Then 

C~y(x,O)=~! l i l - (s) t '~)  ds= it sin =(x / { , a J L  + 

+lcos ~(~  + ili)l l (x / a) "-I A i (x / a)], txy (x, O) -- It(yy (x, O) 

y v ( . ) : '  
n = i r ( n ) r ( n  + 1 - (x) 

For --~ < x < 0, by (1.6) we have 

Gv(x'O)=--K~+!~)X~' '  ~ -- "xy(X'0)=-KIt+7~2(~)d~lI O ~--X 

(1.16) 

The last two integrals, which are Mellin-type convolutions, can be evaluated using the theorem on 
convolution in residue theory 

ay (x, 0) = -l¢lt + (~it0)-I f l (x  / a), - a < x < 0 

[ (x)} 
x~.(x,0) = - ~ t +  lffl + - ys in•a( i t2+l)At  , - a < x < 0  

" ~ito 

f : x~-~-,8 
Oy(x'O)=k3t.['gitos2h2~sRelic°s~(~+i~)~-a) Ai(X)} - 

-FII (Po, To;-X I b)], - .0 < x < -a 

sin n~x . x -~-iSA x 

-n~ ( T o , - ~ ; - x  / b)], - ~ < x < - a  ( 1 . 1 7 )  

l-l,(P,T;t)=-chr~[m~(1 +t)]-I(PcosSlnt  +/~'cth ltSsin 8 In t) 

As in the ease of  It = 0 [15], for It # 0 the jump (u)(x) has constant sign in the slip interval only for 
the root  ~ of  Eq. (1.15). For other roots of  this equation (u)(x) is a function of  variable sign. In the 
interval (0, a) the normal contact stress corresponding to ~ is compressive. We therefore set Z = 
in what follows. 

In Fig. 2 curves 1 and 2, respectively, represent graphs of  the contact stresses %(x, 0) and 
X~y(x, 0) for Vl = v2 = 0.3, o = 0.01 (in this ease V = 0.2801), b = 1, P = 0.1, and T = 1 for It = -0.5 
(with a = 0.7795). The dashed curves represent the graphs for It = 0 (a = 0.7539). In the same figure 
and for the same parameter  values we present graphs of the normal and tangential displacement jumps 
-Z°(x)G1 (A) and --Z2(x)G1 (B). It turns out that for It = -0.5 

a. l . (x,0)<0, ~xy(x,0)>0, Zi°(x)=0,  X° (x )<0 ,  0 < x < a  
(1.18) 

Oy(X,0)=0,  Xxy(x,0)=0, Zl°(x)<0, Z° (x )<0 ,  a < x < b  

The corresponding root Z0 of  Eq. (1.15) for ~t -- 0.5 gives rise to a solution which satisfies all the 
inequalities in (1.18) except one, namely, "qy(x, 0) < 0 for 0 < x < a (the jump of the tangential 
displacement Z~(x) being negative in the slip zone as before). This case (it = 0.5) is therefore non-physical. 
This situation is also encountered for any other relationships between the loads P (~> 0) and T when 
0 < "/~< 1/2 (-t/2 ~< ~' ~< 1/2) being the admissible values of  3t,  0). This fact is especially undesirable when 
P = 0, T < 0. In this case (Vl = v2 = 0.3, o = 0.01) for b = 1 it turns out that a = 5.47 x 10 -15 for 
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Fig .  2. F ig .  3. 

St = -0.5, a = 5.08 x 10 -15 for Ix = 0,  and a = 4.73 x 10 -15 for Ix = 0.5. The functions x°2(x) and 
s~(X, 0) are negative over the whole interval 0 < x < a both for Ix = -0.5 and Ix = 0.5. However, the 

ear stresses are positive over the slip interval only for IX < 0. Analysis of the case -1/2 ~ 7 < 0 leads 
to the following conclusion: sgn IX = -sgn 7 and is independent of the sign of T(P >>- 0). 

As in [15] for St = 0, in the case when IX ~ 0 the normal displacement jump changes its sign at some 
distance from b and oscillates at infinity. For P = 0, T < 0, and Y > 0 we have ~°l(X ) < 0 and Z°(x) > 
0 in the interval a < x < b, and Z°(x) changes its sign for the first time at x0 = 1 + 8 (~ being small and 
b = 1). As T/P increases from - ~  to + ~ ,  the value ofx0 increases from 1 + e toA ~, 1. 

As can be seen from the graphs (Fig. 2), the shear and normal stresses increase asx ~ -0, the shear 
stress becoming infinite while the normal stress remains bounded. Analysis of (1.16) and (1.17) confirms 
this fact 

IO(xa-l), IX~O 
x - , + O :  oy(x,O)=O(xa- l ) ,  z ~ ( x , 0 ) = k 0  ' Ix=0 

x --* -0: ay(x,0)  = O(1), ~ ( x , 0 )  = O(x =-1) 

The tangential and normal displacement jumps have a logarithmic singularity at the point x = b 
(b = 1) where the load is appfied. 

We shall analyse the dependence of the length a = b/~, of the slip zone on the coefficient of friction 
[ IX [. In Table 1 we present the values of ~, for T = P = 1 for some values of V and IX. 

For 7 = 0.1 it can be seen that ~, decreases only by 2.5% as I Ix[ increases from 0 to 0.5 and by 5.8% 
as ] Ixl increases from 0 to 1.0. The larger ] 7], the more important it becomes to take friction into account 
in the sfip zone: for V = 0.5, Z decreases by 12.3% (by 22.8%) as [Ix[ varies from 0 to 0.5 (to 1). It turns 
out that the smaller the ratio TIP the more significant (expressed as a percentage) is the dependence 
of the slip zone length on the coefficient of friction. Below we give the values of ~. for V = 0.5 

T/P 10 5 3 2 1 0 -1 

Ix = O: 1.08 1.35 2.11 4.06 22.8 1.99 x 103 1.78 x 105 

IX = -1: 1.04 1.21 1.76 3.24 17.6 1.53 x 103 1.36 x 105 

For T/P = 10, ~ decreases by only 3.7% as IX varies from 0 to -1, while for T/P = -1 it decreases by 23.6%. 
For large [ IX[ we have the following values of the sfip zone length (TIP = 1, V = 0.5) 

-Ix 1 2 3 5 7 10 
17.6 14,1 12,1 9,98 9,00 8,24 

In Fig. 3 curve 1 represents the dependence of 1/Z on a - -  G1/G 2 for v 1 ----- V 2 " -  0.3, T/P = 10 and IX = 
-0.5, and curve 2 represents the dependence of the same function on T/P for Vl = v2 = 0.3, a = 0.01 
and Ix -- -0.5. 
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Table 1 
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--t.t y=OA 0.2 0.3 0.4 0.5 

10-8~ 10-2~ ~. ~ ~. 

0 120 483 725 85,1 22,8 
0.1 119 478 714 83.3 22.3 
0.3 118 468 691 79.9 21.1 
0.5 117 458 669 76.5 20,0 
1.0 113 433 616 68,7 17,6 

2. T H E  E X T E N S I O N  W I T H  S H E A R  OF A F I N I T E  I N T E R F A C E  C R A C K  
W H E N  T H E R E  A R E  R E G I O N S  OF DRY F R I C T I O N  

Suppose the combined plane II1 U 1-I2 is loaded at infinity 

Oy = 0 o, '~ry = - % ,  Ixl< ** 

o x = (1 - 2 y s g n y ) o  0, xxy = - % ,  lyl<** 

(T is the parameter  defined in (1.7)), suppose a crack (0 < x < a, y = +0)  is open over an interval (b 1 
< x < b2), and for 0 < x < bl and b2 < x < a suppose the crack edges are in contact and obey the law 
of  dry friction. Over the intervals --** < x < 0 and a < x < oo the half-planes are completely banded. 
Without loss of generality, we can assume that x0 > 0 and y > 0. Then the left slip zone is smaller, i.e. 
bl "~ b2 (Fig. 4). 

The  solution of  the problem can be represented as the sum of  two terms. The first (the elementary 
solution) corresponds to the case when there is no crack and has the form 

Oy = o  0, Xxy = - % ,  o x = ( l - 2 y s g n y ) o  0 

( u )  = = o, Ixl< ** 

The other  term is a solution of the following problem H 

o Y[y=~0 = - ° ° '  x xyly=+ a = Xo, /h < x < b2 

(°Y)--('I:xY)=O' ~ x  =g , (x ) ,  ~'x =g2(x) '  Ixl<** (2.1) 

t F 

Fig. 4. 
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stlppgl C(bl,b2), suppg2 c(0,a) 

(x~y +gOy)y=~e =Xo-gOo,  0 < x < b l ;  (x~-ixOy)y=~o =Xo +gOo, /'2 <x<a (2.2) 

The coefficient of friction IX (by the assumption T > 0 and the analysis in Section 1 Ix is positive) takes 
different signs because the slip direction in (0, bl) is opposite to that in (b2, a). Furthermore, additional 
conditions expressed by the inequalities 

('o)(x) ~ o , / ~  < x < t,2 

Oo +Oy(X,:t-O)~ O, xs(O, th)u(b2,a) (2.3) 

must be satisfied. The latter inequality means that the normal stress in the original problem is compressive 
in the region where edge joining occurs. The points bl and b 2 a re  to be determined from the smoothness 
of the crack profile in the vicinity of these points. The cut closure conditions 

~gl(X) dx=o ,  ig2(x) dx--o  (2.4) 
0 

complete the formulation of the problem. 
We shall reduce the above problem H to a system of two singular integral equations. To do this, taking 

(1.5) and (2.1) into account, we substitute the representations (1.6) of contact stresses in terms of gl(x), 
Zz(X) into the boundary condition (2.2) and obtain 

, ,  
O<x < b  2 

-l'lll+ ! - bl<x<a, (2.5) 

~:1: m K -I (--~0 4" ~J~0) 

where IX_+ and ~c are defined in (1.6). 
We will seek a solution of (2.5) in the class of H61der continuous functions such that gl(X) is bounded 

atx = bl andx = b2 and g2(x) has integrable singularities atx = 0 andx = a is bounded asx -~ bl and 
x --) b 2. We set 

7~j = bj / a ( j  = 1,2), t+(x) = - IC  - I  (Xxy "1" IXOy XX, 0) 

and introduce the piecewise-analytic functions 

I ~2/~1 

~i122 I 

@2(s)=f  Zz(ar)edr, @;(s )=7  t+(b:r)edr (2.6) 
0 I 

¢i(s) = I t_(b,~)ear, ¢~(s)=~ t_(ar)ear 
0 I 

with jump line F defined in (1.8). 
problem 

O~'(s) = (~.~ / ~,z)-S-'O?(s)  

¢I)~ (S) ----/11 (S)l][)/(S) + ~'-2s-1112(S)~2 (S)  -- "¢+(S + 1) -I 

( ]~ ($) "~ ~'~+1/21 ($)~)1 ($) 4" ~'22 ( 8 ) ~ 2  ($) -- ~'~+1~[)3 ($) -- (1 -- ~,~+1 )($ 4" 1)-I , ¢  

l/i(s) = IX_ -( -1) / Igt+ ctgn.v, l/2(s) = (- l )Jgg_ + IX+ ctgns (j = 1,2) 

Using the Mellin transform we reduce (2.5) to the Riemann vector 

(2.7) 
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A method of  solving problems of type (2.7) was proposed in [1]. We will state the final result, omitting 
the construction of the solution 

*ro):uo) *to) 

Lo($) -/12 ($)/.~($) ~IJ2($)- 122($)L1-($) RI (8) 

• s + 1 t22 is) 

~ (s)  = (s + 1) -I ~_ - / - 7  2 ($)V2 (s), ~ ;  (s) = - ( s  + 1) -I %_ + L~ (s)R 0 (s)  (2.8) 

Ro(s)=C +eoZ_(s+ l) -! + ~P~'(s), Rl(S)=el%.(s+ l)-t + ~Sl(s)+ ~ ( s )  

e o = - t r o T ( 2 -  a),  e~ = - n ( 8  2 + ¼ ) [ ~ r ( 2  - ct)ch rd$] -~ , %, = x+ - x_ 

/ ~ ( s )  = - 

/ ~ ( s )  = - 

L~(s) = - 

~ r ( - s )  
r ( 1 - a - s ) '  

~ ) r ( - s ) r ( 1 - a - s )  
r(Y2-s-is)rO~-s+iS)' ~-(s) = 

~t~F(-s)F(ct-s) , l~(s)= 
F()~ - s - i5)F()~ - s + i8) 

F(I + s) 2lgt+ sin ru3t 
~ ( s ) =  F( tx+s ) '  ttl = ch2n7 

F(1 + s)F(ot + s) 

F(~A + s + i s ) r o ~  + s -  i8) 

F(1 + s)F(1 - ¢z + s) 

r ( ~  + s + i s ) r ( ) ~  + s -. i8) 

w(,--rE A; A; , v:(,) - j + 0 t '  ~Fl" (s) = = j=is-- l + j +ot j=lS~" sj j=15 

The numbers B0 and sj are defined in (1.11), C is an arbitrary constant, and the coefficientsA 7, B7 will 
be found later. 

By the boundedness of  • and x~y at x = bl and x = b2, the function t_(b1%) is bounded as t --> 1 - 0. 
Taking (2.6) into account, by an Abelian-type theorem, we obtain the asymptotic expression (I~(s) = 
O(s q )  as s ~ o. with s ~ D-, which holds for the function defined in (2.8) if and only if 

~,B'f = 0  (2.9) j=! 

By (2.6), the closure conditions (2.4) for the cut have the form ~ ( 0 )  = ~x~(O) = O, which implies that 

C+x_e0 +Wl+(O)=O, %,el +WI-(O)+W~(O) = 0  (2.10) 

For the functions (2.8) to be analytic in the corresponding half-spaces it is necessary and sufficient that 
the coefficients 

A~ : A~I +CA~o, B~ : B~,~t +CB~o (2.11) 

should satisfy the following infinite Poincar6-Koch algebraic system I ' /  
n + a -  j = l n + j - 1  

I,~.2 ) qn~=~s, +sj 

+ ,,-,.+l ÷[ +2. ~ - o t + l  tl j=j n - l + j  n - o t - s j  
A,o, = ~2 Pn L n "t-el 8 

j=l sn- j+ l -~  sn+sj 

(2.12) 
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(k ffi 0,1; n = 1,2,3...) 

1 2 1 2 ¥ ch2~lrfn+~_~+m)l , +=-~r~2(~l) lF(n+~-ee+i8 / P; =  -ffr l/ P" 

q+ = ~'{I snq n, q'~ = ttls~i qn, d = s in  nee 

i cos ~t(ee + i S ) F ( m  - ~ - i S ) F ( m  + ~ - i S ) F ( m  + ee - ~j  - i S ) F ( m  + )6  - Ix - i 5 )  

q2m = 2~t sh rdil "2 (m)F 2 (m - 2i5) 

q2,n-t =q2m ( r e = l , 2 . . . )  

Substituting the second relationship from (2.11) into (2.9), we find that 

c = -  A-L, A~ ffi ~.nji (k=O,l) 
A0 j=l 

Satisfying conditions (2.10), we arrive at the system 

B + A~ _AAL=_x_eo, ~.( A~ _Z2_]=_x,e ' 
jffilee--j A0 j f t k a - l + j  sj J 

(2.13) 

(2.14) 

bf two transcendental equations in Xa and ~ .  Since X 1 is small, 0 < Xl < 10 -a, and ~ ~, Xx [4, 11], it 
follows that (2.14) can be reduced to a single transcendental equation by approximation. To do this, 
we first transform the infinite system (2.12) to the form (k = 0, 1) 

( ~-e9 St| + ~ - + j _ l  ) A~ =~.~+a-2p~ _SkO+n+ee_ 2 j_-ln 

+ (  
N 

fit, ] (2.15) 
"',''t, + A; : 

An+k f x2 
- e e + l  j = l n + j - I  

B~+~ =0 (n=l,2 .... ), B,~ =0 (n-3,4 .... ) 

: . . , °  ) 
B;,-~-2) fnk, fnk =qn~s--~-I °.l+j=lsn ]~ -j'~IA# -ee' (n--l,2) 

The coeffieientsA,~ can be determined from (2.15) by the recurrence relationships 

A~ k ~+a-2  ~ - Z~-i + =Z~-ct+l ~ + ~m-I = 2.,ankm 2 ' Ant  2.,ank mA'2 
m=l m=l 

ankl = P'n [-'fit0 + x-e0 (n + ee - 2) -I 8tl ] 

an+kl = f i x . e l  ( n -  a + l) -~ Stl + ;k,~-In-la(tl] 

- I ~ , , , - I  a~+k. , ._j  
a,a,m =P-,~- ~l  n + j - 1  

(m = 2,3 .... ) 

Expression (2.13) for C can be transformed into 

C = - x.e, + a i- + = ~ a;m.,  
ao ' am j=lee- j 

and in place of (2.14) we obtain the equation 

+,~,-I ~ a'/,Lm+t-J + 
, ankm = PnA'2 2., j=l n+ j - 1  

a m = ~ Aim- (m=0 ,1 )  
j= lee+ j - -1  

a~ I (1 + a~)('c,e I + a / )  = 'c_e o + a~ 

for ~ ,  the smaller parameter  ~,a being expressed in terms of X2 by 
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~'1 = ~'2g I/(2i8)' g = -(Of20 + f21 )(Clio + f l l )  -I (2.17) 

A denumerable set of solutions of Eq. (2.16) exists among which it is necessary to choose the maximum 
value ~ e (0, 1) [7], and also the denumerable set of values of  ~.x satisfying the first equality in (2.17) 
as well as the inequality Xl < ),,2 

Xl = X2 e x p { ( 2 8 )  -I arg g - g l 8  -1 } ( l  = 1, 2 . . . .  ) 

I~g gl < 

However,  the physical solution, i.e. one for which inequalities (2.3) are satisfied, corresponds to one 
and only one value ~.1 = keexp {(2~)-aarg g - ~r~ -1} (the maximum of the values above). 

The dependence of the slip zone length on the friction is shown in Fig. 5 which gives graphs of  X'2 
= 2 ~  - 1 (to enable a comparison to be made with [11] ~,~ is taken in place of X2) as a function of the 
coefficient of friction IX in the case when o0/x0 = 0 for T = 0.1, T = 0.3, and T = 0.5 (curves 1-3, 
respectively). The dashed line represents the graph of X[ for T = 0.5 from [11]. As IX varies from 0 to 
1, the length 1 - X2 of the larger slip zone increases by 26% for T = 0.5 and only by 5% for T = 0.1. 
The values of  Xl and X2 for IX = 0.3 and Oo/Xo = 0 are presented below for various values of 7 

T 0.1 0.2 0.3 0.4 0.5 
~,t 1.29 X 10 -43 4.94 x 10 -2o 9.91 X 10 -13 5.45 x 10 -9 1.15 x 10 -6 
X2 0.690 0.683 0.673 0.662 0.647 

and the values of k2 for T = 0.5 with IX = 0.3 and Ix = 10 -5 are presented for some values of C~o/Xo (% 
> 0) 

Cto/Xo -0 ,6  -0 .4  -0 ,2  0 O, 1 0,2 0,4 
Ix = 0.3: 0,137 0,239 0,414 0,647 0,754 0,839 0,942 
IX = 10-5: 0,175 0,278 0,449 0,671 0,772 0,851 0,950 

The last row is consistent with the corresponding results in [16, 7] for IX = 0. 
As can be seen, the separation zone increases by a few percent when T (0 < T ~< 0.5) increases and 

IX (0.5 I> IX I> 0) decreases, while it increases several-fold when ao/~0 varies from -0.6 to 0.6. 
The formulae for the jumps of the displacement and the contact stresses can be obtained using the 

inverse Mellin transform in residue theory. For example, for the normal displacement jump, taking (2.6), 
(2.8) and (2.15) into account, we find 

Z°(x) = t ( x ) -  1(b~ ), bj < x </,2 

I(x'= ~Mm[-b-z2 B*=(-~2 )-S=+ b-LB~ (x  ~'] (2.18) 

M2. = r ( m ) F ( m -  2/8)[r(½ + m -  i S ) r ( ~ -  ½ + m - i 5 ) ]  - l ,  M2,n_  1 = M2m 

Because b 1 is small, for b 1 + ~< x < b 2 (e > 0) (2.18) can be transformed to the form 

o- . b ~ _  [cosTt(ot- iS)  ~ r(m-~+__iS_)F(m+~-a+iS)x 
~t [. t sn ~to m=~ F(m)F(m+2iS)(~-m-iS) 

m-}~+i8 jflm+~+iS-ct-j)~b 2) ] 

In Fig. 6 we show the graphs of -GlX° (X)  for  the case o = 0.01, vl = 0.1, v2 = 0.3, IX = 0.3 with 0o/% 
= -0.2, 0, 0.2 (curves 1 ,  1 ° and 1 +, respectively). As in [7], the crack opening decreases as the compressive 
stress intensity increases. 
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3. T H E  E F F E C T I V E  S O L U T I O N  OF C O M N I N O U ' S  I N T E G R A L  
E Q U A T I O N  

When x0 = 0 and ~t = 0, the system of integral equations (2.5) for a crack { - a  < x < a, y = +0} 
open over the interval Ix [ < b can be reduced to the following equation (0 < y ~< 1/2) [2, 5] 

} q)(rl)Tl(1 y~TI) nO0 Z < y < l  (3.1) 

where Z = [1 - (b/a)2[ ~2 and q)0l) = Zl(a(1 - 112) m. The remaining symbols are the same as in Sections 
1 and 2. For Eq. (3.1) an exact solution (expressed as a series) was constructed in [5] in terms of  elliptic 
functions. We shall obtain a solution of  this equation in a different form lending itself well to numerical 
realiTation. We denote by q)_(x), q)+(x) the left-hand side of (3.1) for 0 < x < k and 1 < x < ~, respectively, 
and introduce the Mellin transforms 

I I1~ 
• i(s) = .fq~(x)x ~dx, ¢D;(s) = j" q~(Xx)x'ax 

x i (3.2) 

• ~ (s) = [.~_ ( ~ ) / d x ,  
0 I. 

for which we obtain the vector Riemarm problem 

~ ( s )  = ~.-'-I¢,~ (s) 

O~ (s) = G(s)O ! ( s ) -  ~.s+l{z} 2 ($) -- f ( l  - Zs+l)(s + 1) -1, s • F 

F:Re(s) = 70 • (0,1), f = (tctt+)-Io0 

G(s) = tg ~j ns + 3' 2 ctg ~ ns = K + (s )K-  (s) 

K+(s) = ( l - y 2 ) F ( ~ - s / 2 ) F ( l - s / 2 )  K - ( s ) =  
F ( 1 -  s / 2 - i [ i  / 2 ) I ' (1-  s / 2 + t~ / 2) ' 

[~ __ ~- I  ln{( l  + ¥ ) ( 1 -  ~/)-i } 

r ( s  / 2)r()~ + s / 2) 

r(s  / 2 +il3 / 2 )r(s  / 2 - t~ / 2) 

(3.3) 

Solving (3.3) by the scheme of [17], we find that 

cI,~ (s) = IX- (s)l -i {~I '+ (s) + f ( s  + 1) -~ IX+ (-1)] -~ } + ~'+Jv- ( s ) t f  + (s)]-' 

0 2  (s) = f ( s  + 1) -I + g - ( s ) ~ - ( s )  

O~ (s) = - f ( s  + 1) -i + K+(s){W+(s) + f ( s  + 1) -i [K + (-1)] -I } 
(3.4) 
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** A .+ v*(s)=E :L , V-(s)=E As , ,  

j=1$--$; j=lS'l'Sj --g 

s2j=2j-if$, s2j_l=2j+ifJ ( j = l , 2  .... ) 

The coefficientsA~ form a solution of the infinite PoincarE-Koch system 

A+=Zs"+IA--- -m ~ A; 
j=ls i +sm -2  

., A t ) , ~=~ ,=-3a ,_ !  fo + ~ -'J_ , 
m t 3 - $  m j f l 2 - S j  -$M 

(1 -~  2)[r(m +,13/2)r(m -~4 ÷ip/2)] ~ 
, ,  +ip) j '  r ( m ) r ( m  a [ .  = a [ . _ ,  

(m l.ip] 
N'"=  ( v'-Tt -7 T ) '  A-,.=N._, 

f ,  = J~ J ~ ( I E I  ~' + IX1 - T :z ) - I (ch~rqEI )  - i  

which can be inverted by means of the recurrence relations 

A .  + = ~," 2 . a ~  , = 
k=l k-I 

a~, I = . f , A ~  (3  - s m ) - i  ( 3 . 5 )  

am J=i[,$m+$iJ - I - 2 +  sm+ s2i - 2 (n = 1,2 .... ) 

aTnn=n~l/ ~'iPa~/-l'n-J4 ~'-illa2)'n-))(n=2,3 .... ) 
j=IL2--Sm --$2j-1 2--Sm --82j 

The crack edges join one another at x = - b  if and only if dp-2(s) = O(s-1), s --> 0., s ~ D-, which is 
equivalent to 

~,a~- = 0  (3.6) 
j=l 

by (3.4). The latter condition is a transcendental equation in 7t. Taking into account the fact that ~ is 
small [2, 5] and using (3.5), we transform (3.6) into 

Z2iI~ + (ai'l)-I a~! + O(X2) = 0, ;L ---~ 0 

Hence we find the explicit approximate values 

= 4 expJ-  1 arctg 21~ 2 
xk [ 2p 1-p 

k=0,1  .... 

for k. The physical solution corresponds only to the value ~ (for k = 0). For T = 0,4854 we find ~0 = 
0.01450 and L. = 1 - b/a = 1 - (1 - ~)v2 = 1.0517 x 10 -4, which is identical with the result obtained 
in [5]. 

Below we give the values of ~0 and L. for some values of Y 

T 0.1 0.2 0.3 0.4 0.5 
Zo 3.079 x 10 -11 7.664 x 10 -6 5.143 x 10 -4 4.451 x 10 -3 1.712 x 10 -2 
~,. 4.740 x 10 -~  2.937 x 10 -11 1.322 x 10 -7 9.906 x 10-6 1.465 x 10-4 

By (3.2) and (3.4), the solution of Eq. (3.1) has the form 
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~(x)=-~[j=nL l/~,),,)s-3+ ] A ; E j C X ~ '  _ f X "~-'J-! 

r ( m  - ip / 2 ) r ( m  + H - ip / 2) 
G2m = g(l - y 2 ) F ( m ) r ( m _  i~) ' G2m-I = G2m 

[ ]-', E2m = ( m - ~ 2 - i ~ / 2 )  g(1-T2)2G2m E2m_ I =E2m 

For Xo g 0 the problem can be reduced to two equations, which can be solved independently and differ 
from (3.1) only by the fight-hand sides, i.e. the method presented is applicable in this case. 

4. C O N C L U S I O N S  

1. The effect of  friction in problems concerned with an interface crack is much less than in problems 
involving a punch for corresponding parameter  values, as the coefficient of friction decreases from 1 
to 0.1, the slip zone length in Flamant's problem concerned with a semi-infinite punch when there is 
dry friction and bonding [1] increases more than 700-fold, while in the corresponding problem of a semi- 
infinite crack the length of this section decreases by a factor of 1.15. 

There is a wide range of real parameter  values of the problem in which the stresses and displacement 
jumps on the interface vary by just a few percent as the coefficient of  friction varies from 0 to 0.5 (the 
shear stresses in the slip domain are an exception). This makes it poss~le to use an approximate approach 
when considering the class of contact problems involving an interface crack in the presence of friction. 

2. In the problem of  the indentation of a punch into a half-plane when there is a bonding zone 
(--b, b) and slip zones (-a ,  -b) ,  (b, a), if ~t --> 0, then ~ = b/a --> O, i.e. the bonding domain contracts to 
a point as the coefficient of  friction tends to zero [18, 1]. It follows that Galin's problem becomes the 
problem of  a smooth punch as ~t --> 0 (the boundary conditions degenerate),  and its solution becomes 
Sadowslofs solution [19]. On the other hand, for I1 = 0 and ~, > 0 we have Fal'kovich's problem [20]. 
However, in [20] bonding prevails almost everywhere in the contact plane: for v = 0.3, b = 0.997a. This 
can be explained by the choice in [20] of the root of the corresponding equation from which to determine 
the accessory parameter  ~,° which appears in the differential equation to which the problem can be 
reduced: the root ~,~ was taken instead of the value ~,[ = 0 leading to Sadowsky's solution. For this 
choice the contact domain consists of one bonded region in the middle and two small slip sections at 
the end. An incorrect situation arises: the shear stresses in (0, b) have fixed sign, while the normal stresses 
have variable sign. 

The boundary conditions do not degenerate as ~t --> 0 in the problem of an interface crack: the 
separation domain and slip zones remain as before, and the corresponding solution is correct. However, 
the second (next) root  of  the corresponding transcendental equation leads to a non-physical solution 
also, as in the punch problem. 

I wish to thank the referee for his remarks. 
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